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Numerical computations of the steady, two-dimensional, incompressible, uniform
velocity but stably stratified flow past a normal flat plate (of unit half-width) in
a channel are presented. Attention is restricted to cases in which the stratification
is weak enough to avoid occurrence of the gravity wave motions familiar in more
strongly stratified flows over obstacles. The nature of the flow is explored for channel
half-widths, H , in the range 5 6 H 6 100, for Reynolds numbers, Re, (based on
body half-width and the upstream velocity, U) up to 600 and for stratification levels
between zero (i.e. neutral flow) and the limit set by the first appearance of waves.
The fourth parameter governing the flow is the Schmidt number, Sc, the ratio of
the molecular diffusion of the agent providing the stratification to the molecular
viscosity. For cases of very large (in the limit, infinite) Sc a novel technique is used,
which avoids solving the density equation explicitly. Results are compared with the
implications of the asymptotic theory of Chernyshenko & Castro (1996) and with
earlier computations of neutral flows over both flat plates and circular cylinders.
The qualitative behaviour in the various flow regimes identified by the theory is
demonstrated, but it is also shown that in some cases a flow zone additional to those
identified by the theory appears and that, in any case, precise agreement would, for
most regimes, require very much higher Re and/or H . Some examples of multiple
(i.e. non-unique) solutions are shown and we discuss the likelihood of these being
genuine, rather than an artefact of the numerical scheme.

1. Introduction
Steady flow around a two-dimensional bluff body is a classical problem in fluid

mechanics. As the body Reynolds number increases from zero it is well-known that
the near wake becomes unsteady at a relatively low Reynolds number (based on
upstream velocity and body scale but dependent on body shape) and laminar vortex
shedding begins well before any transition to turbulence in the separated shear
layers. A somewhat esoteric but interesting class of laminar flow is that in which the
(Kármán-type, asymmetric, periodic) vortex shedding is prevented by the imposition
of symmetry on the wake centreline, either by the physical addition of a central
splitter plate or, analytically or numerically, by simple enforcement of a frictionless
boundary condition. The behaviour of such flows has received considerable attention,
starting with the free-streamline models of Helmholtz (1868) and Kirchhoff (1869),
in which the flow within the separated region immediately behind the body was
supposed stagnant and the downstream nature of the flow was not explored. An
alternative model was proposed by Batchelor (1956), in which the separated wake



22 I. P. Castro

was supposed to consist of two regions of equal and opposite (constant) vorticity
either side of the symmetry axis. Subsequent numerical computations (for cylinders,
Fornberg 1985) and analytical studies (e.g. Peregrine 1985; Smith 1985) suggested that
there was some truth in both these models, but the full asymptotic nature of the flow
was only finally revealed by Chernyshenko (1988). It turned out that in the region
very close to the body the flow is essentially Kirchhoff-like, but with almost constant
vorticity regions further downstream in the two counter-rotating eddies on either side
of the symmetry axis. Contrary to both the earlier models, however, the wake was
found to be unbounded in both width, W , and length, L, with W,L = O(Re) so that
the wake vorticity is O(Re−1) in the limit Re → ∞. It should be noted that the first
theory in which both L and W were of order Re was that of Taganov (1968, 1970),
although some of his quantitative results differ from those of Chernyshenko (1988),
as discussed in the latter and by Chernyshenko & Castro (1996 hereinafter denoted
as CC). Throughout the present work the Reynolds number is defined using the
(unit) body half-width and the upstream velocity. This is consistent with a number of
more recent papers, but means that, for an equivalent flow, Re values are effectively
larger by a factor of two than those of Fornberg (1985, 1991), who used the cylinder
diameter as the length scale; i.e. Rehere = 1

2
ReFornberg .

The problem becomes a little more realistic if the body is effectively just one of
an infinite cascade of identical bodies, by being located at the centre of a plane
channel (as in the case of a body in a wind tunnel, for example). This imposes a
further parameter, defined here as H , the ratio of the channel width to the body
width. Numerical solutions for circular cylinder cascades have been presented by
Fornberg (1991) (with Re 6 400 in the present terms and 5 6 H 6 100) and for
flat plate cascades by Natarajan, Fornberg & Acrivos (1993) (with Re 6 400 and
5 6 H 6 25) and Ingham, Tang & Morton (1990) (with Re 6 500 and H = 2).
Chernyshenko’s (1988) asymptotic theory was extended to this case by Chernyshenko
& Castro (1993) and, again, showed how the numerical results tend qualitatively
towards those expected, but only at the very highest Reynolds numbers.

The latter asymptotic theory was extended further by CC to the case in which the
additional physical effect of stable density stratification was added. This introduces
two additional parameters: a Richardson number, Ri, defined by −[(gH2/ρU2)∂ρ/∂y]
and the Schmidt number, Sc (the ratio of the coefficient of diffusivity of the agent
providing the density variations to the kinematic viscosity). The density gradient,
∂ρ/∂y, refers to conditions far upstream and is assumed small enough to allow the
Boussinesq approximation to be applied. Weak stratification is here defined by the Ri
range 0 6 Ri 6 π2; for larger values the flow becomes subcritical for at least one wave
mode and disturbances can then propagate upstream without limit (if the effects of
viscosity are ignored). A more convenient measure of the strength of the stratification
is provided by the parameter K , defined by K = Ri/π2, so that the range of interest
in this work is limited to 0 6 K 6 1 with K = 0 and K = 1 referring to neutral
and ‘critical’ conditions, respectively. With velocities normalized by U and pressure
normalized by ρU2 the flow is governed by the following equations:

u · ∇u = −∇p+ (1/Re)∇2u− (Riρ/H)j , (1.1)

u · ∇ρ = (1/(ReSc))∇2ρ, (1.2)

∇ · u = 0. (1.3)

Here ρ is the density variation normalized by the upstream quantity ∂ρ/∂y and for
brevity is called the density in what follows. Symmetry about y = 0, the x-axis through
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Figure 1. Sketch of the geometry. Only the half-space 0 < y < H is computed.

the centre of the body, allows us to consider only the upper half of the flow field.
The boundary conditions used in CC and in the present numerical computations (see
later) are

x→ −∞, u→ 1, ρ→ −y, ∂u/∂y = 0, (1.4)

y = 0, ∂u/∂y = 0, ρ = 0 outside the body, (1.5)

y = H, ∂u/∂y = 0, ρ = −H, (1.6)

and, on the body surface,

u = 0, ∂ρ/∂n = 0. (1.7)

Equation (1.5) is the imposed symmetry condition and (1.6) is the zero-stress condition
ensuring that y = H is a streamline with a condition on ρ consistent with (1.4).
Figure 1 is a sketch of the problem considered. Since, as discussed later and in
CC, stratification effectively reduces the Reynolds number at which the asymptotic
results are likely to be accurate, the major motivation of the present work was to
undertake a much more comprehensive numerical study of this case than has been
done previously.

Before proceeding, in § 2, to outline the numerical techniques used and then, in § 3,
to present the results, it is helpful to summarize the qualitative behaviour of the flow
in the various regimes first identified for the neutral case (i.e. no density stratification)
by Chernyshenko (1988) and in CC for the stratified case. First, for Re → ∞ but
with H = O(Re) both the eddy length and width have order Re. The situation is
sketched in figure 2(a). The flow on the body scale is the Kirchhoff free-streamline
flow, with the downstream eddy effectively open and extending to infinity. On the
eddy scale, however, the body shrinks to a point, the limiting flow is inviscid and is, in
fact, the Sadovskii flow in a channel, delineated by Chernyshenko (1993) and Turfus
(1993). This flow contains two closed-streamline regions touching on the symmetry
axis and with constant (but oppositely signed) vorticity within them – as required
by the Prandtl–Batchelor theorem (Batchelor 1956). The Bernoulli jump in velocity
across the bounding streamline is zero, as shown by CC. Unbounded (i.e. H = ∞)
Sadovskii flows of this sort have been computed numerically by Sadovskii (1970) and
Saffman & Tanveer (1982). The major flow characteristics – body drag, eddy vorticity,
eddy length and eddy width – can be expressed by the following relations:

CdRe = α(H/(k2
dRe), Ri), (1.8)

ωedk
2
dRe = β(H/(k2

dRe), Ri), (1.9)

L/(k2
dRe) = γ(H/(k2

dRe), Ri), (1.10)

W/L = δ(H/(k2
dRe), Ri). (1.11)
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Figure 2. Flow regimes for asymptotically large Reynolds number.

kd is the usual Kirchhoff drag coefficient (0.88 for a flat plate in unbounded flow) and
the four functions, α, β, γ and δ, depend only on the particular Sadovskii flow resulting
from the given values of H/(k2

dRe) and Ri. (Details of how this can be calculated are
given in CC.) Note also that these results were worked out for the limiting case in
which Sc→∞, but were argued in CC not to depend strongly on the particular value
of Sc. We address this particular issue when discussing the present numerical results.

Secondly, we consider the situation in which both Re→∞ and H →∞ but in such
a way that H/Re → 0. In this case a ‘long eddy Sadovskii flow’ emerges, illustrated
in figure 2(b) and first identified by Chernyshenko (1993). Apart from the Kirchhoff
region at the body and the inviscid eddy closure around L, the eddy has essentially
constant width and vorticity and the parameters have the following functional forms:

Cd = α2(Ri)k
2
d/H, (1.12)

ωed = β2(Ri)/H, (1.13)

L = γ2(Ri)k
2
dRe, (1.14)

W = δ2(Ri)H. (1.15)

Note the conclusion that neither the drag nor the eddy vorticity depend on Re and the
eddy length does not depend on H . Again, the four functions (constant at fixed Ri) can
also be determined from the theory presented in CC. It should be emphasized that this
long-eddy solution, for which CC presented some apparent numerical confirmations
(but see later), is strictly only valid as H → ∞ and will thus only emerge for a large
enough channel width. If H is too small, the four ‘constants’ will probably be functions
also of H and the asymptotic theory makes no predictions about their behaviour or,
indeed, about the detailed nature of the flow in such cases. Actually, for small enough
H the boundary conditions probably do not admit anything other than long, thin
‘boundary layer-type wakes’, as indicated in figure 2(c), with viscous closure around
x = L. This possibility was discussed briefly by Chernyshenko & Castro (1993) and,
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as they noted, is supported by the numerical calculations of Milos & Acrivos (1986)
and Milos, Acrivos & Kim (1987). These issues are discussed further in due course.

The influence of the stratification on the separated wake depends critically on the
channel width. For large enough H (strictly, large enough H/(k2

dRe)) the stratification
scale is large compared with the eddy scale so that the effects are not large. Strati-
fication reduces the drag and the eddy vorticity (α2 and β2 are decreasing functions
of Ri), while increasing the eddy length (γ2 increasing with Ri). For narrow channels,
on the other hand, the changes in drag and eddy vorticity are much larger and L
reduces significantly. So at intermediate H , changes in L may be non-monotonic at
fixed Re and H . In neutral flow the vorticity shed into the eddy at the body is lost
by diffusion from the eddy, through the vorticity boundary layers surrounding it.
For Ri > 0, however, in addition to the vorticity generation by the body, vorticity
is generated baroclinically outside the eddy and can thus diffuse into it. The overall
vorticity balance is quite subtle and the diffusion of the additional externally pro-
duced vorticity is insufficient to prevent a much larger fall in ωed for smaller channels.
Some preliminary numerical computations were presented in CC and were shown
to have some features at least qualitatively consistent with the above aspects of the
theory. They therefore suggested that the physical mechanisms identified therein were
essentially correct. However, they were very limited in scope; values of H and Re
were not high enough for the appearance of clear examples of the ‘wide wake’ flows
sketched in figure 2(a), for example, and the grids used were too coarse to allow
adequate resolution of the density boundary layers for the value of Sc used (1000).
It is the aim of the present paper to present a more comprehensive set of compu-
tations, covering a wider parameter range than was possible earlier. In some respects
the results corroborate the earlier work. However, they also suggest the existence of
intermediate flow regimes currently not identified by any theoretical treatment and
thus lead to further interesting questions.

2. The numerical techniques
Equations (1.1)–(1.3) were discretized using a finite volume approach on a staggered,

rectangular, non-uniform grid and solved using a multigrid version of a fairly standard
iterative (ADI) method. The multigrid version of the code was developed from an
earlier NS solver of the author’s and is described in detail by Paisley (1997). It is worth
noting that the code also contains the option of conducting genuine (second-order
accurate) time-dependent calculations, but only the steady flow (iterative) option was
used for the present work. (Further comments on this point are given later). Brief
details of the entire (steady-flow) scheme are provided here for completeness.

Integration of the momentum and density equations (1.1) and (1.2) over a typical
control volume, with use of the divergence theorem, gives∑[(

uφ− Γ ∂φ
∂x

)
dy +

(
vφ− Γ ∂φ

∂y

)
dx

]
= Sφ dxdy. (2.1)

φ stands for u, v or ρ, Γ = 1/Re or, for the density equation, 1/(ReSc) and Sφ is a
source term. In the momentum equations this contains the pressure gradient plus, for
the vertical momentum equation, the buoyancy term. For the density equation, Sφ = 0.
Central differencing was used for the diffusive terms. Solution accuracy is crucially
dependent on the way in which the advective terms are approximated. In this work a
monotonic scheme was used, which prevents unphysical oscillations and was derived
by assuming that the flow across cell boundaries is one-dimensional in directions
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normal to the flow. It is based on a scheme similar to the one originally devised for
transient, compressible flows (van Leer 1974) and is described by Leonard & Mokhtari
(1990). A mixture of central differencing and second-order upwind interpolation is
used. Suppose that the value of the flow variable at the centre of a cell is φP and
that φU and φD denote the corresponding values at the cells immediately upstream
and downstream, respectively. The value of φ at the downwind cell face, φf , midway
between the P and D points (required, for example, for the uφ product in the first
term of (2.1)) is given by

φf = 1
2
(φP + φD)φ̂P + 1

2
(3φP − φU)(1− φ̂P ), (2.2)

where φ̂P is the ratio

φ̂P =
φP − φU
φD − φU .

The convective and diffusive contributions from the four cell faces are collected in
the usual way so that (2.1) can be expressed as

aPφP =
∑

amφm + S
φ
P , (2.3)

where the summation is taken over the values at the centres of the four neighbouring
cells and the multiplying coefficients (aP , etc.) contain the convective and diffusive
flow rates. The source term contains the second-order corrections from the convective
scheme just described. These equations were solved iteratively in turn (i.e. for each
variable sequentially), along with a pressure perturbation equation (derived using
(1.3)), using SIMPLER (Patankar 1980). This is a more efficient version of the well-
known SIMPLE algorithm. Under-relaxation on the velocities, the density and the
pressure perturbation was required, as usual for such schemes.

For flows in which Sc � 1, solution of the density equation (1.2) would require a
much finer grid than that necessary for the momentum equations, in order to capture
the density boundary-layer regions adequately. This was not done in CC, where
numerical solutions were presented for cases with Sc = 1000 (roughly equivalent to
situations in which the stratification is provided by, say, salt in water). As indicated
earlier, some questions therefore arise over the accuracy of the solutions. In the
present work an entirely different technique was used, which is actually exact for
Sc = ∞. In that specific case, the density field reduces to

ρ = ρ(ψ) = −ψ, ψ > 0,
ρ = ρ(ψ) = 0, ψ 6 0,

}
(2.4)

instead of (1.2) and where ψ is the stream function. Cases with Sc = ∞ were obtained
by avoiding solution of (1.2) altogether and, rather, computing ψ after each velocity
field iteration and then setting the density field according to (2.4) before proceeding
with the next iteration. ψ was determined via a simple quadrature scheme; this was
significantly faster than the time required to solve the full density equation and also,
of course, was much more accurate than the latter. Sc = O(1) cases were solved in
the usual way by including solution of the discretized version of (1.2) in the iteration
process. The results presented in § 3 include assessment of the differences in the
solutions for the Sc = 1 and Sc = ∞ cases. (Recall that, as stated earlier, CC argued
that the asymptotic results – worked out for Sc = ∞ – should not, in fact, depend too
strongly on the particular value of Sc.)

For multigrid solution (an almost exclusively used option for the present compu-
tations) a hierarchy of grids (up to five levels) was defined, with successively coarser
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grids being produced by simply removing every other node in both directions. Conti-
nuity control volumes on the coarse grid were formed from the sum of the four control
volumes on the next finer grid. Variables were restricted to the coarser grid using
averages of the nearest fine grid neighbours, area weighted to ensure preservation of
mass fluxes on non-uniform grids. Bilinear interpolation was used for prolongation
of coarse grid solutions back onto the next finer grid. Generally, a W-cycle was
used to visit the grids in the hierarchy, with one pre-smoothing and one or two
post-smoothing iterations on each. As usual in the multigrid approach, in principle
only the coarsest grid equations needed to be solved with any accuracy – the role of
the solver on the other grids is essentially to smooth errors.

For the present problem, particular care was needed in the generation of the grids,
to ensure that appropriate cell structure was maintained around the flat plate on each
member of the grid hierarchy. Furthermore, because of the staggered grid arrange-
ment, various adjustments to the coefficients in (2.3) were necessary for cells adjacent
to the plate. For example, u-velocity cells spanned the plate, allowing straightforward
imposition of the plate boundary condition (u = 0), but requiring a de-coupling of
the conditions within those cells on either side of the plate and other modifications at
the plate tip, which was located in the centre of a u-cell. Similarly, the v-velocity cells
lay adjacent to the plate (on each side), so zero-flux conditions had to be applied on
the appropriate faces. Pressure nodes were not located on the plate surface so there
were none of the difficulties which would otherwise arise if a node coincided with the
plate tip. Other boundary conditions simulated those used in the asymptotic theory
of CC, except that zero-gradient conditions were imposed at the outlet. The question
of precisely where this outlet, and the inlet, need to be located in order to obtain
results essentially independent of their location is discussed below; it turns out to be
strongly dependent on the degree of stratification.

A typical (fine) grid had 642× 162 nodes in the x- and y-directions, respectively, so
with four levels of coarsening the coarsest grid had some 42× 12 nodes; the factors
are not precisely 16 because of the need to maintain grid numbers equal to integral
multiples of two on each side of the plate. Even larger grids were used in many
cases (see table 1 for an example). The speed-up factors for convergence (deemed
to have occurred when the sum of (absolute) residuals on each equation fell below
10−4) was very significant and generally consistent with those found by Paisley (1997),
who showed that, on a 320 × 40 node grid, convergence in single-grid mode took
some 30 times longer than when using a five-level multigrid option. For some of
the present cases even greater efficiencies were achieved because convergence rates
were essentially independent of the grid size and much finer grids were used than
those of Paisley. Not surprisingly, however, convergence rates became slower with
increasing Re or Ri. Increasing Ri, in particular, led to greater convergence difficulties
at the higher Re values because of the greater coupling between the velocity and
density fields. The difficulties were most severe when using the Sc = ∞ technique.
In some cases considerable trial and error was required to find combinations of the
cycle parameters and relaxation factors which led to convergence. Most of the latest
computations were undertaken on an 800 MHz Pentium III (using just one processor)
and, for reference, with that machine a typical W-cycle required about 0.112 ms/node.
A relatively simple case (H = 10, Re = 50, Ri = 0, say) requiring about 20 cycles
to convergence on a 674× 162 grid thus took about 4 min to compute from scratch.
More cycles were required for significantly higher Re and/or Ri but few calculations
required more than an overnight run.

In all cases presented here the grids were highly non-uniform because it was
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H = 10, Re = 200, Sc = 0 H = 10, Re = 400, Sc = ∞ H = 50, Re = 200, Sc = 1

Grid L Cd Grid L Cd Grid L Cd

162× 42 96.32 1.651 170× 42 87.85 0.4146 250× 86 95.66 0.2607
322× 82 101.7 1.701 338× 82 102.9 0.4493 498× 170 103.4 0.2853
642× 162 102.4 1.713 674× 162 106.9 0.4584 994× 338 106.6 0.2970

102.5 1.717 108.4 0.4616 108.9 0.3073

Table 1. Grid dependences for difficult cases. The fourth row contains values obtained by
Richardson extrapolation.

particularly important to ensure adequate resolution around the plate itself. A typical
smallest mesh size at the plate on the finest grids was about 0.002. This ‘nearest-
plate-mesh-size’ was set as one of the parameters in the grid generation routine and
for some cases an additional fixed mesh size was imposed at a particular downstream
x-location, in order to minimize numerical errors in the region near the eddy closure –
particularly important for the wide-wake cases (figure 2a). Mesh expansion ratios
were below 1.1 everywhere, so that the additional discretization errors arising from
grid non-uniformity were kept as low as possible (Castro & Jones 1987).

In addition to speeding up the solution process, the multigrid algorithm allowed
a convenient means of assessing grid dependency of solutions. This was done by
interpolating the fine grid solution onto the next coarsest grid, then running the code
again to convergence with that coarse grid as the finest grid. The process was repeated
to obtain solutions on the successively coarser grids and Richardson extrapolation
was used to estimate the errors in the finest-grid solution. It was only necessary to do
this for the ‘hardest’ cases, i.e. flows with the largest H and/or the highest Re and Ri,
which typically yielded eddy lengths two orders of magnitude larger than the body
scale and were thus the most taxing from a gridding point of view. We include here
some examples as an indication of the general level of accuracy of our computations.

Three cases will be presented, chosen as fairly extreme cases of the three flow types
illustrated in figure 2(a). Table 1 contains results for the drag coefficient and the eddy
length for three successively finer grids in each of these three cases, along with the
corrected values obtained by Richardson extrapolation. Cd was computed simply by
integrating the pressure difference across the plate and L was deduced by appropriate
interpolation of the u-velocity on y = 0. For the two H = 10 cases, the errors in Cd
and L obtained on the finest grid are below 1% and 2%, respectively; they are a
little larger for the H = 50 ‘wide-wake’ case. It should be noted that the eddy length
is a particularly sensitive indicator of solution accuracy; a 2% variation can arise
from a very much smaller change in the vorticity shed by the body. All the data
presented in the following section are those obtained on the finest grid used for each
particular case. Richardson extrapolation, whilst it could have been undertaken for
all variables in all cases, would have required considerably more work and, on the
basis of the results in table 1, was deemed unnecessary. In some of the more difficult
cases, however, a solution on the next-coarsest grid was also obtained to check that
the finest grid solution was likely to be sufficiently accurate.

In addition to grid dependency tests it was obviously important to ensure that
the inlet and outlet boundaries were located sufficiently far from the body to have
no effect on the solutions. This turned out to be an increasingly significant issue as
Ri increased, as might be expected in view of the possibility of vorticity generation
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outside the eddy. For Ri = 0 it was found that even in the most extreme cases, locating
the upstream boundary at xu = −60 was quite adequate – locations further upstream
resulted in changes of less that 1% in L and Cd. On the other hand, for K = 0.9 (the
highest value used for most of the present computations) significantly larger upstream
distances were required. Extensive tests for H = 50, for example, demonstrated that
xu = −250 was required before further increases gave changes of less than 1%.
Some cases required even larger distances. The downstream boundary location, xd,
was found to be less crucial although, naturally, it needed to be significantly further
downstream than the eddy closure location. Most runs had xd > 2L. The technique
employed by Ingham et al. (1990) and Ayaz & Pedley (1999) was used to check that
this was adequate. They showed that simple asymptotic solutions to equation (1.1) can
be obtained for large positive (and negative) values of x (for Ri = 0). These solutions
allow the use of asymptotic boundary conditions, which were written into a separate
version of the code. It was found that their use made no significant difference to the
results obtained without them, provided the above condition was maintained. Since
it was not straightforward to find equivalent asymptotic solutions in the Ri 6= 0 case,
we did not pursue this method for that case and relied solely on checks with larger
domains for the most extreme cases.

As a final comment on solution accuracy, it is worth emphasizing the agreement
between the present neutral flow results for H=5, 10 and 20 and those obtained by
Natarajan et al. (1993) using an entirely different numerical approach (they did not
obtain solutions for H > 25). For 50 6 Re 6 300 the differences in both L and Cd
were always less than 0.5%. The exception was the 1.2% in Cd, for H = 5, Re = 50,
but Natarajan et al. quoted their Cd data to three significant figures only (1.46 in this
case) so a significant part of the difference could well be rounding errors (the present
Cd was 1.433 for this case).

3. Results and discussion
3.1. Basic data

One of the eventual objectives is to compare results with the asymptotic behaviour
outlined earlier. We start, however, with a more straightforward demonstration of the
effects of Ri, Re and H on the flow. Figure 3 shows the behaviour of L and Cd as
the ‘blockage ratio’ (1/H) increases for a fixed value of Re (100). For neutral flow
(K = 0) the behaviour is unremarkable; as H falls the eddy length falls and the drag
increases (because the base pressure becomes more negative). Note again the good
agreement with the result of Natarajan et al. (1993), for H = 20. For narrow channels
the qualitative behaviour when K > 0 is similar, independent of the particular value
of K . Results for an extreme case, K = 0.9, are shown in figure 3. Both L and
Cd are significantly smaller than for K = 0. On the other hand, for wide channels
(1/H < 0.03) it is clear that the eddy length can be larger than for neutral flow,
as anticipated from the asymptotic theory. Notice that, as suggested by the data of
figure 3, as 1/H → 0 the results become independent of K , at least for the range of K
considered here, since a Richardson number based on body scale becomes effectively
zero as H → ∞. The figure includes data for Sc = 1 and Sc = ∞ and it can be seen
that the qualitative behaviour is the same and, indeed, the quantitative results are
not strongly dependent on Sc. For Sc = ∞ the drag coefficient is noticeably higher
whereas the eddy length is smaller than for Sc = 0, for all H . This behaviour with
Sc was found to be quite general, so a detailed study of how the flow varies with Sc
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Figure 3. (a) Eddy length and (b) drag for Re = 100. •, K = 0.9, Sc = ∞; ◦, K = 0.9, Sc = 0;
4, K = 0 (i.e. neutral). ×, NFA, Natarajan et al. 1993.

was not performed. Although it might be of some interest to enquire what happens
for Sc� 1, computations were limited to the two specific cases given by Sc = 1 and
Sc = ∞, since these are representative of the most common stratifying agents that
occur in practice – heat or salinity, respectively.

The flow behaviour as K varies is shown for the particular case Re = 100, H = 50
in figures 4 and 5. Recall that the theory suggests that a non-monotonic behaviour
of L is possible. This is demonstrated in figure 4(a); L first increases with increasing
stratification before falling rapidly once K exceeds about 0.8. This fall is mirrored in
the behaviour of Cd (figure 4b). Some comments regarding the behaviour near K = 1
are appropriate. For K > 1, classical linear (inviscid) theory shows that obstacle drag
is zero at integral multiples of K but rises to a maxima in between such multiples,
because of the presence of lee waves (see Baines 1995 for a helpful summary of such
theories). Viscous effects and, particularly, the occurrence of separation modify this
behaviour but, nonetheless, we expect a rise in Cd as K increases through unity; the
data have precisely that behaviour although, because of the presence of an upstream
travelling mode, converged solutions could not be obtained beyond about K = 1.04.
The existence of an essentially Kirchhoff flow on the body scale is shown by the
virtually constant value of kd, the Kirchhoff drag coefficient, which varied from 0.876
at K = 0 to 0.906 at K = 0.98, compared with the theoretical value of 0.88 for
unbounded (neutral) flow. kd values were deduced from the computed solutions by
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using the relation kd = Cd/(2∆P ), where ∆P is the pressure difference between the
stagnation points on either side of the plate at y = 0. Note that for K > 0.6, Cd < kd
so that the base pressure on the lee side of the plate is actually positive and the total
drag is lower than the contribution from the front face, since the latter is roughly kd.

Figure 5(a) shows the effect of stratification on the eddy width, W , normalized both
by L and H , and figure 5(b) shows the corresponding fall in eddy vorticity, ωed and
rise in eddy area, S . For the present purposes W is defined as the maximum value of y
along the dividing streamline and S is defined as the area within this streamline (which
separates from the plate at its tip and ‘reattaches’ at x = L). The locus of the dividing
streamline was calculated as part of a second ‘post-processing’ version of the code,
which computed values of the stream function and vorticity at each mesh point, using
the previously computed velocity field and standard (first-order) methods. The eddy
vorticity is taken as the average vorticity inside the dividing streamline. Increasing
K leads to significant increases in W and hence S (proportionately greater than the
increase in L) and a corresponding fall in ωed. Given that the vorticity generated
outside the eddy diffuses into it (and is of the same sign as the eddy vorticity) it might
at first sight seem surprising that stratification reduces ωed. However, the velocity
above the eddy near separation is reduced by the stratification (crudely, the flow finds
it ‘harder to go uphill’) so that the shed vorticity is reduced by stratification and this
effect outweighs the diffusional effect. Larger eddy areas are physically consistent with
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smaller eddy vorticity since we expect, roughly, that ωedL = U. Notice again that the
largest effects occur for Sc = ∞ but the behaviour is qualitatively independent of Sc.

The influence of Re at fixed H and K is shown in figure 6. For sufficiently small
H (below some critical value, Hcrit, say) the eddy length, figure 6(a), simply increases
linearly with Re whilst the eddy width becomes roughly constant. For K = 0 these are
boundary-layer-type solutions, but it proved to be very difficult to obtain converged
solutions of this type beyond a certain Re. (If this is symptomatic of a flow instability
arising at large Re, it might be consistent with the finding of Milos & Acrivos (1986)
that, for a similar problem, genuine boundary-layer solutions could not be obtained
if Re were sufficiently large for H below some critical value.) Figures 7(a) and
8(a) illustrate the wakes for such cases. Solutions with the present steady flow code
could not be obtained (for H = 10, for example) beyond about Re = 250, although
Natarajan et al. present a solution at Re = 300 so one clearly exists. On the other
hand, for sufficiently strongly stratified conditions, solutions up to Re = 500 could
be obtained (for H = 10) and flows similar in appearance to the long-eddy solution
of Chernyshenko (1993) appear. Figures 7(b) and 8(b) illustrate these flows, which
clearly differ in character from the corresponding cases at K = 0. In particular, the
eddy closure around x = L is similar in appearance to a genuine inviscid closure,
i.e. it is relatively sudden, which is a specific feature of inviscid eddy closures (see
Chernyshenko & Castro 1993). However, in all cases (including the H = 5 cases not
shown here) these ‘long eddies’, although having an apparently inviscid closure, do not
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have the strictly flat tops which genuine long-eddy Sadovskii eddies would exhibit;
close inspection of the Re = 500 case in figure 7(b), for example, shows that around
x = 50 there is a noticeable increase in eddy width. The upstream part of the eddy
seems to consist of a ‘development’ region with the Sadovskii-type constant-vorticity,
constant-width region only appearing in the latter part of the flow. This development
region is more extensive than that anticipated for the ‘buffer’ region which CC pointed
out must exist between the Kirchoff flow and the Sadovskii eddy. Figure 9 presents an
alternative way of viewing the wakes, which highlights this feature. Vorticity surfaces
are shown for a clear boundary-layer-type case (H = 10, K = 0, Re = 200), figure 9(a),
and two flows which are more closely like the long-eddy solution, figures 9(b) and 9(c).
These latter are stratified cases with K = 0.9 and are for Re = 200, to compare directly
with figure 9(a), and Re = 500. In the latter case a significant constant vorticity region
is clearly developing in the rear half of the eddy, with a sudden inviscid closure, but
there remains an equally long intermediate region upstream. This intermediate region
does not reduce in length with increasing Re so the implication is that at all Re
there remains an intermediate region, matching the body scale Kirchoff flow at its
upstream end and the Sadovskii long-eddy flow at its downstream end. Although, as
noted above, the existence of some kind of buffer region between the Kirchoff and
the Sadovskii regions was suggested by CC, its character was not delineated and the
more extensive intermediate region identified here seems much more significant than
was anticipated. We return to this point later.

The development of a wide wake for sufficiently large H is also evident from
the data in figure 6. This is most clearly seen in figure 6(c), which shows the ratio
W/L. Once a wide wake begins to develop, the wake width starts to increase with
Re much more rapidly than its length so that W/L is non-monotonic if H is above
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Hcrit. Natarajan et al. suggested that, for neutral flow, wide-wake conditions did not
develop for H < Hcrit ≈ 15 (significantly larger than the Hcrit ≈ 8 found by Fornberg
(1991) for circular cylinder arrays). Figure 6(c) suggests that Hcrit may be nearer 20
than 15, since W/L continues to fall monotonically for H = 20. In fact, neutral
flow computations for H = 20 and Re up to 700 were obtained and these clearly
showed the development of a ‘long-eddy’ Sadovskii flow (rather than a wide-wake
flow), separated from the body by an increasingly long intermediate region, rather
like that evident in figure 9(c). So it could be argued that even H = 20 is too low for
genuine wide wakes, which only begin to appear incipiently before (as Re increases
further) being constrained by the domain to turn into long-eddy Sadovskii wakes.

For H = 50, however, there is no doubt that wide wakes begin to appear; for neutral
flow, this process seems to start around Re = 70 whereas in stratified conditions it
can appear much sooner – the K = 0.9 data shown suggest that Re = 50 marks the
start of wide-wake development. Note that plotting the data this way (Re increasing
at fixed H) implies that at sufficiently large Re we expect a long-eddy solution to
emerge eventually, whatever the value of H . So all the curves in figure 6(c) would
be expected eventually to fall with increasing Re; whether or not a wide-wake flow
appears first (i.e. at lower Re) depends on H and K . It clearly does not for H 6 20.
Streamlines and vorticity contours for some typical wide wakes for the H = 50 case
are shown in figures 10 and 11, respectively. Figures 10(a) and 11(a) are for neutral
flow at a Reynolds number below the point at which wide wakes start to develop, but
beyond which such wakes appear for K = 0.9, as demonstrated in figures 10(c) and
11(c). Figures 10(b) and 11(b) show a neutral flow wide wake of similar dimensions
to the latter case, for Re = 120. Figure 12 shows the corresponding vorticity surfaces
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for these three cases; the very different character of the wide wakes (figure 12b, c)
from the boundary-layer type (figure 12a) is clear. These plots also highlight the
existence of the thin boundary layer (i.e. viscous) region surrounding the eddy even
when the latter has a clearly wide-wake character. With increasing Re, this boundary
layer would obviously become thinner and presumably would also reduce in (relative)
amplitude until, in the limit, the vorticity plateau would simply cease in a vorticity
jump (down) to zero across the dividing streamline, for cases of neutral flow.

As a further example, straightforward sequences of streamline and vorticity contour
plots for increasing Re at fixed H (100) and K (0.9) are shown in figures 13 and
14, respectively. Figure 15 shows the vorticity surfaces for the final two cases in the
sequence. This sequence is a clear case of boundary-layer wakes at the lower Reynolds
numbers and subsequent development of wide wakes for (in this case) Re ≈ 80. It
can be contrasted with the sequences shown in figures 7 and 8 which, because H is
below the critical value, do not give wide wakes at any Re. (It should be commented
that the apparently wavy structure of the vorticity surfaces in the shear layer on the
edge of the wake, visible in figure 15, is only an artefact of the plotting routine.)

3.2. Comparisons with asymptotic theory

Recall from § 2 that the important parameters in determining the asymptotic be-
haviour are H/k2

dRe and Ri, encapsulated in equations (1.8)–(1.11). In comparing
the present computational data directly with the results of the asymptotic theory it
is therefore appropriate to plot the data in the parametric form suggested by these
equations. Before presenting such plots some comments about the expected accuracy
of the theory for the parameter ranges covered here are necessary. The theory suggests
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that the Reynolds number at which the asymptotic results may be representative of
the actual flow is significantly lower in the stratified case than in the neutral case.
It is shown in Chernyshenko & Castro (1993) that the accuracy depends essentially
on the value of the velocity on the free streamline on the body scale, which can be
expressed by

V 2kdRe = C, (3.1)

where V is the free streamline velocity in the Kirchoff flow (which, according to the
theory, tends to zero as Re→∞) and C is a constant. Put another way, with V 2 = ε,
good agreement can only be expected for

C/(kdRe) < ε (3.2)

with ε sufficiently small (lower than unity, say). In the stratified case, C is a function of
both H and Ri. The parametric results given by equations (1.12)–(1.15) allow curves
of εH/kd vs. εkdRe to be deduced and these are shown in figure 16, for the neutral
flow case and the K = 0.9 case. Above each curve V 2 < ε and the smaller the value
of ε the greater the accuracy of the asymptotic results. Clearly this ‘acceptable’ region
is very much larger for K = 0.9 than it is in neutral flow. For example, for a neutral
circular cylinder flow (kd ≈ 0.5), choosing ε = 1 suggests that, for H = 50, an Re of
at least 240 is required before the flow might be expected to conform approximately
to the asymptotic results. This is why only a few of Fornberg’s (1991) computations
for that case yield results at all comparable with the asymptotics (see Chernyshenko
& Castro 1993 for detailed discussion). In contrast, for the present case of a flat plate
(kd ≈ 0.88) with K = 0.9, the corresponding ‘accuracy boundary’ in figure 16 (for
H = 50) is crossed when Re ≈ 27. These two cases are indicated in the figure and it
is clear that the stratified cases considered here should allow better comparison with
the asymptotics.

Figures 17 and 18 show the variation of L/(k2
dRe) and CdRe, respectively, for various
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values of H . Since the present (and earlier) neutral flow computations arguably only
just reach H and Re values which allow sensible comparisons with the theoretical
results, discussion here is limited to the stratified cases. Only the K = 0.9 cases are
therefore included in figures 16 and 17, which also include the asymptotic results from
the theory for both K = 0.9 and for neutral conditions (K = 0).

Note first the behaviour indicated by the asymptotics. For H/Re→ 0 with H →∞
the long-eddy solution emerges, for which Cd remains constant and L increases linearly
with Re. The theoretical curves in the figures thus have that behaviour, roughly for
H/(k2

dRe) < 0.1. The present computational results show a very similar behaviour
but, for H = 5 and H = 10, the numerical values of Cd and L/Re are significantly
lower than those predicted. As was emphasized in § 1, the asymptotic result is only
valid for sufficiently large H and, if H is too small, the relevant ‘constants’ appearing
in the solution (α2 and γ2 in equations (1.12) and (1.14), respectively) are likely to
be functions of H as well as Ri. The present results confirm this expectation and
show that increasing blockage (decreasing H) actually leads to increasing reductions
in both the drag and the eddy length associated with the ‘long-eddy’ solution. There
is as yet no theoretical solution for such cases. The apparently good agreement in
eddy length (figure 17) for the H = 20 case at the larger Re is probably fortuitous;
it is not mirrored in the drag data (figure 18). However, the H = 50 data suggests
that this may well be a high enough H to yield close agreement with the long-eddy
asymptotics, although there would have to be a two- to three-fold increase in Re
above what was possible with the present numerical scheme (i.e. to Re > 500) to be
certain of this.

Secondly, the theoretical curves on these figures emphasize the point that at suf-
ficiently large H/(k2

dRe) the effect of stratification becomes weak; unlike the K = 0
asymptotics, there is a peak in eddy length for K = 0.9. This occurs around
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H/(k2
dRe) = 4 (figure 17) but at higher values the eddy length falls again towards the

value appropriate for K = 0. The peaks in L in the numerical results in figure 17
should not be associated with this former peak. They occur simply because data at
the larger H/(k2

dRe) values correspond in these computations to cases having too low
an Re for the flow to behave as predicted by the high Re asymptotics. Similar peaks
appear in the neutral flow data (not shown) and in corresponding comparisons with
Fornberg’s (1991) cylinder computations, as demonstrated in CC. It is interesting,
however, that even at Re which would seem high enough to satisfy the accuracy
requirements more than adequately (Re = 100, say) the actual flows for H = 50
and H = 100 have significantly higher eddy lengths and drag than the asymptotic
theory suggests. Note that for H = 50 and H = 100 the appropriate points in the
parameter space of figure 16, which are included there, are well inside the accuracy
bounds, if we accept ε = 1. For Re = 100, the boundaries are actually crossed for
values of ε between 0.3 and 0.4. (Alternatively, with ε = 1, the point where we
expect qualitative changes in behaviour towards the asymptotic flow, the boundaries
are crossed between Re = 30 and 35.) Now if we accept the validity of the theory
and thus conclude that, despite these apparently satisfied accuracy conditions, H is
nonetheless still not high enough to yield good agreement with it, then it is clear that
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the path towards the asymptotic result, at fixed H/(k2
dRe), cannot be monotonic with

H . Again, there is no current theory which can account for this aspect of the flow’s
behaviour. Alternatively, of course, we might question the validity of the asymptotics,
but there seems no good reason so to do.
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3.3. Non-unique solutions

Presentation of the computational results is concluded by a brief consideration of
cases in which multiple solutions appeared. Such behaviour has not been identified
previously. Fornberg (1991) found that on an insufficiently fine grid, as the Reynolds
number was increased the eddy length began to fall below the linear behaviour.
This also occurred during some of the present computations for K = 0. However,
it also transpired that fully converged solutions could be found with a much lower
L than expected, in addition to the more standard solution, on precisely the same
grid. Examples are shown in figure 19. Note, in particular, that use of a 340 × 84
grid (the second in a multi-grid sequence of three) gave two quite distinct solutions
in the approximate Reynolds number range of 160 < Re < 190. The initial ‘lower
branch’ solution arose by accident, usually if too large a step in Reynolds number
was attempted in computing the ‘upper branch’. Once it arose, however, it could be
followed both at increasing Re and also at decreasing Re until close to the turning
point. Likewise the upper branch solution could be followed until close to its turning
point. The dotted line connecting the two branches in the L/Re plane (figure 19a) is
a suggested (qualitative) form of the bifurcation behaviour, where the solution must
presumably be unstable and therefore impossible to find with the present numerical
method. (Note that the line refers to solutions on that one grid only; there is only
one solution for Re > 190.)

Multiple solutions to Navier–Stokes problems written in finite-difference form have
been found before in other contexts and are usually indicative of an inadequate
grid and/or numerical scheme rather than genuine non-uniqueness in the Navier–
Stokes equations. Certainly, in the present case, the point at which the bifurcation
occurred depended on the grid resolution, so that the coarsest of the three grids
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(170 × 42) yielded some multiple solutions at a much lower Reynolds number (and
over a much smaller range), as shown in figure 19. With the finest of the three
grids (680 × 168), solutions could not be obtained beyond about Re = 250, but this
was undoubtedly caused by the downstream boundary location being too near the
body (at x = 180). Adding additional nodes beyond this point whilst maintaining
an identical grid upstream allowed converged solutions up to Re = 500, but ‘lower
branch’ solutions could not be found on these fine grids. This does not, of course,
necessarily mean that they did not exist. It is interesting that the physical appearance
of the lower branch solutions is very like the usual ‘wide-wake’ flow, having roughly
constant eddy vorticity, as shown in figure 20, which compares vorticity surfaces
for the two solutions obtained on the medium grid at Re = 175. Furthermore, the
behaviour of the lower branch solution with increasing Re is what might be expected
if a genuine Prandtl–Batchelor eddy structure were to be present asymptotically, i.e.
eddy length tending to a constant and body drag tending to zero. The likelihood
of such a flow existing at high Reynolds has been questioned previously and most
recently discussed by Turfus & Castro (2000). Their theoretical arguments suggest,
however, that if such a solution were to exist asymptotically, it would only appear at
Reynolds numbers significantly higher than those covered in the present work. Since,
in addition, there is no doubt that the ‘lower branch’ solutions shown in figure 19
are grid dependent, the possible existence of a Prandtl–Batchelor solution at higher
Re must remain questionable. Nonetheless, these non-unique results are believed to
be suggestive and a proper attack on this problem using more appropriate numerical
techniques (including continuation methods, etc.) might be fruitful. At the very least,
these ‘lower branch’ solutions serve as a salutary reminder that it is quite possible to
generate converged solutions which look physically reasonable, but are nonetheless
spurious.
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4. Conclusions
The results presented here have confirmed the qualitative behaviour suggested by

the asymptotic theory of CC. For example, the theoretical result suggesting that the
asymptotic structure is reached at lower Re in stratified cases than in neutral cases is
clearly demonstrated. However, the computed solutions have highlighted a number
of distinct differences. Some of these are simply a result of the inability to reach high
enough domain widths (H) and/or Reynolds number (Re); the asymptotics requires
both to tend to infinity. For H = 50 and K = 0.9, for example, although the data show
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Figure 20. Vorticity surfaces for H = 20, K = 0. Re = 175. (a) ‘Lower branch’ (medium grid)
solution. (b) ‘Upper branch’ (medium grid) solution.

the appearance of the wide-wake Sadovskii flow given by the theory, they show that
quantitative agreement is likely to appear only at Re considerably higher than 500.
For lower H and high enough Re, the solutions have the appearance of the ‘long-eddy’
Sadovskii flow predicted by Chernyshenko (1993) (for H/Re → 0) but, significantly,
this only arises downstream of a substantial intermediate region, whose length also
grows with Re and appears to have a boundary-layer-like structure. There is currently
no theory (asymptotic or otherwise) describing this region of the flow, which is clearly
much more significant than the ‘buffer’ zone postulated by Chernyshenko & Castro
(1993). Furthermore, quantitative agreement with the asymptotics for this long-eddy
solution does not occur, at least for H < 50, and there is no existing theory for finite
H with which to compare the data.

The boundary-layer-type solutions which appeared at low H (5 and 10 for neutral
flow in the present set of computations) became very difficult to obtain once Re
exceeded about 250. This probably indicates an inherent (physical) instability in the
flow, not noticed in the corresponding (neutral) computations of Natarajan et al.
(1993) because they used a Newton scheme to solve the equations. In fact, subsequent
time-dependent computations (to be reported separately) have indeed shown that in
addition to the steady solution there exists also a periodic solution (at Reynolds
numbers above about 180 for H = 10 and neutral flow). So the steady solutions
obtained for Re > 180 are actually unstable ones. It is not yet known whether similar
behaviour occurs in other cases and the whole question of stability would seem to
require further investigation.
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